[image: image1.jpg]

JF Scanner

By Joshua Foster – JF Software

http://www.jfsoftware.net/lego/scanner

Scanner Protocols and Compression Methods

Scanning Process

RCX

1. RCX turns on

2. Program starts, sets variable #5 to 4444

3. RCX waits for PC to change var5 to 0 *OR* for Message() to equal 1

7. RCX detects var5 change, starts scanning into 1500-long datalog (not all values will be used)

8. When datalog is full, sets var5 to 9999

9. RCX waits for PC to change var5 to 0

Steps 7 through 11 are repeated until...

14.
RCX detects var5 is now 5555, so it finishes scanning the current line, resets the scan head, and changes var5 to 9999

15.
RCX waits for PC to change var5 to 0

19.
RCX detects var5 change, gives double-beep and ends program

PC

4. PC program starts

5. When Start Scanning button is pressed, PC sets var5 to 0

6. PC waits for RCX to change var5 to 9999

10. PC detects var5 change, starts downloading datalog and processing points

11. When finished downloading datalog, sets var5 to 0

12. When the user presses the Stop!!! button, PC sets var5 to 5555

13. PC waits for RCX to change var5 to 9999

16. PC detects var5 change, starts downloading datalog and processing points

17. When finished downloading datalog, sets var5 to 0

18. PC closes serial connection and redraws image (if wanted)

Pixel Format (RCX: from brightness to encoded value)

The RCX scans in two pixels at a time. To save space, it combines them into one value by multiplying the first pixel by 100, and adding that to the second pixel. In other words, a 48 pixel and a 54 pixel get combined into 4854. If the scan head hits the edge of the scanner before getting the second pixel, then it multiplies the first pixel by –100. So, a 48 pixel becomes –4800. If the scan head hits the edge after getting the second pixel, then on the next loop, it adds a 9999 value to the datalog. After adding a 9999 or a negative value, the scan head moves back to the right, and the whole thing advances once.

Pixel Format (PC: from encoded value to brightness)

To convert an encoded value back to the two pixel brightnesses, follow this flowchart:

[image: image2.jpg]Is the value negative?

|

!

Yes

Divide the value by 100
to get the first pixel.
There is no second pixel,
but end the current line.

No

Is the value 9999?

Yes
There are no pixels
in this value. End
the current line.

No

Divide by 100 and remove the decimal
portion to get the first pixel. Subtract
(100 * first pixel) from the value to get

the second pixel.

To convert these 0-100 pixel values to RGB values, multiply each pixel value by 2.55. This will give you R, G, or B, however you look at it. Using whatever method you wish to convert R, G, and B values into one RGB value, you will get a grayscale image of the scanned picture.

After getting all of the pixels, my ScanView program has a few extra things it can do:

· Adjust for min/max

This involves searching for the lowest pixel brightness and the highest pixel brightness. Then, as it draws the picture, it uses this method to get a scaled R, G, or B value:

((a - pixmin) / (pixmax - pixmin))

Where a is the pixel value, pixmin is the lowest pixel value, and pixmax is the highest pixel value.

· Ignore below 35

Generally, any pixel brightness below 35 is an error by the scanner, and can be ignored. This includes not counting <35 pixels in the search for the lowest pixel value (for “adjusting for min/max”).

· Cut sides to smallest

No matter how hard I try, all of my scans are a little erratic. Sometimes the scanner picks up too many pixels in a line, and sometimes it gets too few. This “cutting” process involves finding the line with the fewest pixels, and cutting every line to this width. This makes the scanned images look sharper and cleaner.

